Should you’ve shopped on Amazon up to now few months, you might need observed it has gotten simpler to search out what you’re on the lookout for. Listings now have extra photographs, detailed product names, and higher descriptions. The web site’s predictive search characteristic makes use of the itemizing updates to anticipate wants and suggests a listing of things in actual time as you kind within the search bar.
The improved purchasing expertise is because of Abhishek Agrawal and his Catalog AI system. Launched in July, the device collects info from throughout the Internet about merchandise being offered on Amazon and, primarily based on the information, updates listings to make them extra detailed and arranged.
Abhishek Agrawal
Employer
Amazon Web Services in Seattle
Job title
Engineering chief
Member grade
Senior member
Alma maters
College of Allahabad in India and the Indian Statistical Institute in Kolkata
Agrawal is an engineering chief at Amazon Web Services in Seattle. An professional in AI and machine learning, the IEEE senior member labored on Microsoft’s Bing search engine earlier than transferring to Amazon. He additionally developed a number of options for Microsoft Teams, the corporate’s direct messaging platform.
“I’ve been working in AI for greater than 20 years now,” he says. ”Seeing how a lot we are able to do with expertise nonetheless amazes me.”
He shares his experience and keenness for the expertise as an energetic member and volunteer on the IEEE Seattle Section. He organizes and hosts profession growth workshops that educate individuals to create an AI agent, which might carry out duties autonomously with minimal human oversight.
An AI profession impressed by a pc
Agrawal was born and raised in Chirgaon, a distant village in Uttar Pradesh, India. When he was rising up, nobody in Chirgaon had a pc. His household owned a pharmacy, which Agrawal was anticipated to hitch after he graduated from highschool. As an alternative, his uncle and older brother inspired him to attend school and discover his personal ardour.
He loved mathematics and physics, and he determined to pursue a bachelor’s diploma in statistics on the University of Allahabad. After graduating in 1996, he pursued a grasp’s diploma in statistics, statistical high quality management, and operations analysis on the Indian Statistical Institute in Kolkata.
Whereas on the ISI, he noticed a pc for the primary time within the laboratory of Nikhil R. Pal, an electronics and communication sciences professor. Pal labored on figuring out irregular clumps of cells in mammogram photographs utilizing the fuzzy c-means model, a data-clustering method using a machine studying algorithm.
Agrawal earned his grasp’s diploma in 1998. He was so impressed by Pal’s work, he says, that he stayed on on the college to earn a second grasp’s diploma, in pc science.
After graduating in 2001, he joined Novell as a senior software program engineer understanding of its Bengaluru workplace in India. He helped develop iFolder, a storage platform that enables customers throughout totally different computer systems to again up, entry, and handle their recordsdata.
After 4 years, Agrawal left Novell to hitch Microsoft as a software program design engineer, working on the firm’s Hyderabad campus in India. He was a part of a staff growing a system to improve Microsoft’s software program from XP to Vista.
Two years later, he was transferred to the group growing Bing, a alternative for Microsoft’s Stay Search, which had been launched in 2006.
Enhancing Microsoft’s search engine
Stay Search had a visitors charge of lower than 2 % and struggled to maintain up with Google’s faster-paced, extra user-friendly system, Agrawal says. He was tasked with bettering search outcomes however, Agrawal says, he and his staff didn’t have sufficient consumer search information to coach their machine studying mannequin.
Knowledge for location-specific queries, akin to close by espresso retailers or eating places, was particularly essential, he says.
To beat these challenges, the staff used deterministic algorithms to create a extra structured search. Such algorithms give the identical solutions for any question that makes use of the identical particular phrases. The method will get outcomes by taking key phrases—akin to places, dates, and costs—and discovering them on webpages. To assist the search engine perceive what customers want, Agrawal developed a question clarifier that requested them to refine their search. The machine studying device then ranked the outcomes from most to least related.
To check new options earlier than they had been launched, Agrawal and his staff constructed a web-based A/B experimentation platform. Managed assessments had been accomplished on totally different variations of the merchandise, and the platform ran efficiency and consumer engagement metrics, then it produced a scorecard to point out modifications for up to date options.
Bing launched in 2009 and is now the world’s second-largest search engine, in response to Black Raven.
All through his 10 years of engaged on the system, Agrawal upgraded it. He additionally labored with the promoting division to enhance Microsoft’s providers on Bing. Adverts related to an individual’s search are listed among the many search outcomes.
“The work appears straightforward,” Agrawal says, “however behind each search engine are a whole bunch of engineers powering adverts, question formulations, rankings, relevance, and site detection.”
Testing merchandise earlier than launch
Agrawal was promoted to software development supervisor in 2010. 5 years later he was transferred to Microsoft’s Seattle places of work. On the time, the corporate was deploying new options for current platforms with out first testing them to make sure effectiveness. As an alternative, they measured their efficiency after launch, Agrawal says, and that was wreaking havoc.
He proposed utilizing his on-line A/B experimentation platform on all Microsoft merchandise, not simply Bing. His supervisor authorised the concept. In six months Agrawal and his staff modified the device for company-wide use. Because of the platform, he says, Microsoft was in a position to easily deploy up-to-date merchandise to customers.
After one other two years, he was promoted to principal engineering supervisor of Microsoft Groups, which was dealing with points with user experience, he says.
“Many workers acquired between 50 and 100 messages a day—which grew to become overwhelming for them,” Agrawal says. To minimize the stress, he led a staff that developed the system’s first machine studying characteristic: Trending. It prioritized the 5 most essential messages customers ought to concentrate on. Agrawal additionally led the launch of incorporating emoji reactions, display screen sharing, and video requires Groups.
In 2020 he was prepared for brand spanking new experiences, he says, and he left Microsoft to hitch Amazon as an engineering chief.
Improved Amazon purchasing
Agrawal led an Amazon staff that manually collected details about merchandise from the corporate’s retail catalog to create a glossary. The information, which included product dimensions, coloration, and producer, was used to standardize the language present in product descriptions to maintain listings extra constant.
That’s particularly essential on the subject of third-party sellers, he notes. Sellers itemizing a product had been coming into as a lot or as little info as they wished. Agrawal constructed a system that robotically suggests language from the glossary as the vendor sorts.
He additionally developed an AI algorithm that makes use of the glossary’s terminology to refine search outcomes primarily based on what a consumer sorts into the search bar. When a consumer sorts “purple mixer,” for instance, the algorithm lists merchandise below the search bar that match the outline. The consumer can then click on on a product from the checklist.
In 2023 the retailer’s catalog grew to become too massive for Agrawal and his staff to gather info manually, so that they constructed an AI device to do it for them. It grew to become the inspiration for Amazon’s Catalog AI system.
After gathering details about merchandise from across the Net, Catalog AI makes use of large language models to replace Amazon listings with lacking info, right errors, and rewrite titles and product specs to make them clearer for the client, Agrawal says.
The corporate expects the AI device to extend gross sales this 12 months by US $7.5 billion, in response to a Fox News report in July.
Discovering objective at IEEE
Since Agrawal joined IEEE final December, he has been elevated to senior member and has grow to be an energetic volunteer.
“Being a part of IEEE has opened doorways for collaboration, mentorship, {and professional} development,” he says. “IEEE has strengthened each my technical information and my management expertise, serving to me progress in my profession.”
Agrawal is the social media chair of the IEEE Seattle Part. He’s additionally vice chair of the IEEE Computational Intelligence Society.
He was a workshop cochair for the IEEE New Era AI World Leaders Summit, which was held from 5 to 7 December in Seattle. The occasion introduced collectively authorities and business leaders, in addition to researchers and innovators engaged on AI, clever gadgets, unmanned aerial vehicles, and related applied sciences. They explored how new instruments could possibly be utilized in cybersecurity, the medical discipline, and nationwide disaster rescue missions.
Agrawal says he stays updated on cutting-edge applied sciences by peer-reviewing 15 IEEE journals.
“The group performs an important function in bringing authenticity to something that it does,” he says. “If a journal article has the IEEE emblem, you may consider that it was thoroughly and diligently reviewed.”
From Your Website Articles
Associated Articles Across the Net

